Bayesian Adaptive Lasso
نویسندگان
چکیده
We propose the Bayesian adaptive Lasso (BaLasso) for variable selection and coefficient estimation in linear regression. The BaLasso is adaptive to the signal level by adopting different shrinkage for different coefficients. Furthermore, we provide a model selection machinery for the BaLasso by assessing the posterior conditional mode estimates, motivated by the hierarchical Bayesian interpretation of the Lasso. Our formulation also permits prediction using a model averaging strategy. We discuss other variants of this new approach and provide a unified framework for variable selection using flexible penalties. Empirical evidence of the attractiveness of the method is demonstrated via extensive simulation studies and data analysis.
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملSelf-adaptive Lasso and its Bayesian Estimation
In this paper, we proposed a self-adaptive lasso method for variable selection in regression problems. Unlike the popular lasso method, the proposed method introduces a specific tuning parameter for each regression coefficient. We modeled self-adaptive lasso in a Bayesian framework and developed an efficient Gibbs sampling algorithm to automatically select these tuning parameters and estimate t...
متن کاملForecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net
I use the adaptive elastic net in a Bayesian framework and test its forecasting performance against lasso, adaptive lasso and elastic net (all used in a Bayesian framework) in a series of simulations, as well as in an empirical exercise for macroeconomic Euro area data. The results suggest that elastic net is the best model among the four Bayesian methods considered. Adaptive lasso, on the othe...
متن کاملInferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors.
Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that in...
متن کاملVariable selection in linear models
Variable selection in linear models is essential for improved inference and interpretation, an activity which has become even more critical for high dimensional data. In this article, we provide a selective review of some classical methods including Akaike information criterion, Bayesian information criterion, Mallow’s Cp and risk inflation criterion, as well as regularization methods including...
متن کامل